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Abstract— In this paper. the boundary element method (BEM) is applied to the analysis of interface
cracks between dissimilar anisotropic materials in plane elasticity. It is based on the quadratic
element formulation and special crack-tip elements which incorporate the proper O(r~' **") oscil-
latory traction singularity are employed. A simple expression relating the stress intensity factors to
the BEM computed traction coefficients is derived. and this procedure for determining stress
intensity factors is validated by several examples. The numerical results obtained are shown to be
very satisfactory even with relatively coarse mesh discretizations.

I. INTRODUCTION

The study of cracks that lie along the interface between two different elastic media is
important in providing a better understanding of the integrity of bonded interfaces between
dissimilar materials, and for determining the appropriate factors which affect the mechanical
propertics of composites and multi-phase solids. In such problems, the near-tip ficlds may
be characterized by the complex stress intensity fuctor K = K +iK,, and the stresses in the
vicinity of the interface crack tip are oscillatorily singular, of the order r 'Y, where 7 is
a bimaterial property. Also, the tensile and shear effects are always coupled, even for single
mode loading. As a result, the stress intensity factors (S.1.F.), K, and X, should not be
interpreted in the classical separate sense as for cracks in homogencous materials.

The bimaterial interface crack problem has been the subject of extensive theoretical
and experimental investigations in recent years f[e.g. Rice (1988), Hascbe er al. (1987),
Kacznski and Matysiak (1989), Comninou (1990), Charalumbides et al. (1989), Sun and
Jih (1987), Matos et al. (1989), Hutchinson and Evans (1989), Ycehia and Sheppard (1988),
Toya (1990), Park and Earmme (1986) and Cao and Evans (1989)], although it has
previously also received some attention by Williams (1959), Erdogan (1965), England
(1965), Rice and Sih (1965), Perlman and Sih (1967) and Comninou (1977), among others.
However, these studies based on the linear elastic fracture mechanics approach have con-
centrated mainly on isotropic bimaterials ; similar investigations into anisotropic bimaterials
are relatively limited in number. Reported works in this latter case include those by Wiilis
(1971), Clements (1971), Ting (1986), Bassani and Qu (1989a, b), Wu (1990, 1991), Ni and
Nemat-Nasser (1991) and Nakagawa er al. (1990), all of whom have treated the problem
analytically. Numerical methods have also been employed for the analysis of interface
cracks between non-isotropic clastic media, but the finite clement method is the technique
almost exclusively used. Among the contributions in this regard are those by Wang and
Yuan (1983). Kuo and Wang (1985), Raju et al. (1988), Sun and Manoharan (1989), and
Lin and Hartmann (1989).

The boundary clement method (BEM), also commonly known as the boundary integral
cquation (BIE) method. has recently been applied to the study of interface cracks as well,
but only in isotropic bimaterials [Yuuki et al., 1987 ; Yuuki and Cho, 1989 ; Lee and Choi,
1988 ; Tan and Gao. 1990a.b, 1991 ; Gao and Tan, 1992). In the BEM approach employed
by Yuuki et af. (1987) and Yuuki and Cho (1988), Hetenyi's solution for a point load in
an infinite platc made of two dissimilar isotropic media was used as the fundamental
solution in the BIE formulation. The stress intensity factors, K| and K|,, were then obtained
by extrapolation techniques based on the computed crack face displacement data. Lee and
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Choi (1988). on the other hand. used the conventional formulation of the BEM with
quadratic isoparametric elements. They obtained the stress intensity factors by directly
correlating the computed nodal displacements on the elements adjacent to the interface
crack-tip to the classical field solution. In both these approaches, however, very refined
mesh discretizations, by conventional BEM standards. need to be employed. Tan and Gao
(1990a. b. 1991) and Gao and Tan (1992) also used the conventional BEM in their studies,
but with quarter-point O(r ' °) traction-singular crack-tip elements. Instead of computing
for K, and K, directly. the modulus. K,,. of the complex stress intensity factor. which may
also be written as K = K, ", was obtained. [t is worth mentioning here that for the interface
crack in isotropic bimaterials, this quantity K is directly related to the strain energy release
rate. In thesc references, the authors calculated K, from expressions they had derived
relating it to the computed nodal tractions or to the nodal displacements of the quarter-
point crack-tip elements. The phase. . of the complex stress intensity factor, however, was
not determined directly using a formally established procedure. Instead, it was estimated
via its relationship with the crack face displucements at certain positions on the crack-tip
elements. These positions were established from numerical experiments carried out on
several test problems with exact analytical solutions. Nevertheless. good solution accuracy
for K, and ¢ was obtained even with relatively coarse mesh designs.

It ‘s paper, the conventional BEM with quarter-point crack-tip elements is applied
to th-  alysis of interface cracks between two dissimilar anisotropic media in two dimen-
sions. [n contrast to the previous treatment by the authors on interface cracks in tsotropic
bimaterials mentioned above, the proper O(r ') traction singularity is incorporated in
the crack-tip elements employed. Also, instead of obtaining K, and ¢, the focus of the study
is the direct determination of K, and Kj,. This is because, as will be evident later, any
expression for Ky, in terms of the computed primary variables, namely, the displacements
and the tractions, becomes significantly more complicitted in the anisotropic case, and it is
also doubtful if the less than formal procedure to estimate the phase angle y of the complex
stress intensity factor remains applicable. Morcover, the relationship between the strain
energy release rate and K, is no longer as direct and simple as before. In this study, analytical
cxpressions which enable K} and K, to be caleulated directly from the computed nodal
tructions on the crack-tip elements are derived. The veracity of the present approach is
demonstrated by several examples involving an interface crack in isotropic and anisotropic
bimaterials, Before these results are presented and discussed, the analytical basis of the
method employed will first be shown.

2. BASIC EQUATIONS AND THE S.LF.

The development of the equations presented here closely follows that by Bassani and
Qu (1989) and Wu (1990). The indicial notation is used, in which the Latin indices take on
the values 1, 2 and 3 while the Greek indices only take on the values [ and 2. Also,
summation is implied for repeated indices.

For a generally anisotropic elastic body in Cartesian co-ordinate space x,, the stress-
strain relation may be written as

Oy = Cklnmamn (l)
and the Navier's equation of equilibrium for plane deformation of the body as
C/(:m/lum‘z[l = O~ (2)

where u,,. 0, and ¢, are the displacements, stresses and strains, respectively, and Cy,., are
the elastic constants of the material. By introducing the following Fourier transform pair:
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f) = #l/?_; J:x f(x)e“*dx, (3a)
V2
| * .
flo) = _J f(&errde, (3b)
\/Zn - %

where i = \/— 1. and applying them to eqn (2) over the x; co-ordinate, the following
equation may be obtained :

- J -
A il

EC kit + jE(Cr+ Criz) ax. —Cix> I 0. 4

This equation may also be written in matrix notation as

o TR
HQu+/ES+SN) =~V =5 =0, s)

where the superscript T denotes the transpose of the matrix and

—Cllll CIIIZ Clll.\—
Q=Q)=Cu) =|Cizii Cinz Cians | (6a)
—Cl‘ll CIJIZ Clll.\—
—('Illl (‘IIZZ CIIZ\-
S=(S4)=(Cux) =|Ciziy Crazx Ciann | (6b)
LCv: Coar Craod

('IZIZ (1221 CIIIJ
V=) =(Cus) =] Cssis Ciaza Caaay |- (6¢)
Cair Cazr Cung
Equation (4) or (5) admits particular solutions of the form
G (S) = a(g))e N O
or, in matrix notation,
i=a()e ™ (8)
provided that a and &, satisty the cigenvalue equation
[$1Q+¢:E:(S+SN) +<&iV]a(g) = 0. 9)
IF ¢, = p&,, eqn (9) becomes
[Q+p(S+S") +p*V]a(g)) =0 (10)
and the necessary and suflicient condition for a not having trivial solutions is thus the

vanishing of the determinant of the coefficient matrix in eqn (10). That is
IQ+p(S+SN+p'Vi =0, (1

which is a sixth-order polynomial in p. Since Q. S and V are real and are functions of the
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materiial constants C,,,... the roots py (N = 1.6), are independent of . And because eyn
(2) is elliptic. eqn (1) has three pairs of complex conjugate roots. Thus the six roots may
be written as

Im(py,) >0, l’u‘}::[T\;. M=113 (12)

Consider now a crack lying along the interface between two semi-infinite solids which
are made of linear elastic anisotropic materials I and 11, respectively, as shown in Fig. 1.
In the vicinity of the crack-tip. the stresses ahead of the crack along the interface are written
as
t=1=(0,; 02 03:)". (13)
From dimensional considerations [see Rice (1988)]. the stress intensity factors for interface
cracks may also be written with reference to a charactenistic dimension, say L. of the
physical problem. These stress intensity factors will be written as

K(L) =(Ky Ki Ku)' (14)

and their relationship with the stresses tis

K(L) = Jzﬁ-n[(” ]: (15)

where [see Ting (1986))
! b+ 48
."=2rzl"(l-/i> (16)

b (17

and

B={—lu[(WD )

Ineqn (17), W and D are the negative real and imaginary parts of a complex matrix M,
that is,

Material

Fig. 1. An interface crack between dissimilar anisotropic media.
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M= —(W+iD) (18)

and M in turn s related to a Hermitian matrix A which is defined by the elastic constants
of the bimaterial. More specifically.

M= —i2n)' AT (19)
A= (B'+8B")"", (20)
) A 3 -1

B'=i(2n) "' " } Adj L’(l”\)[ Y, C(py) Adj L’(p.’u)} . 2n
N= =1

L*(py) = Q + 3 [S*+(SH) ] +pive, (22

C(py) = (S +pi V. 23
x =111,

where the superscript x = [ or [T refers to material [ or 11, respectively.
It can be shown that (Ting, 1986)

e[ (WD Y >0 (24)
so fineqn (17) is always real. Also, in egn (15), the matrix R is defined by
Rlc] = L+ Im[c}P+ (1 = Re[e)P7, (25)

where Im and Re denote the imaginary and real parts, respectively, Tis the unit matrix, and

= ;f wD ! (26)
M = W+iD. (27)
[t should also be noted that R has the following properties
R[] =1, (284)
R[c]* R[] = Ree]. (28b)

in which the arguments ¢ and ¢ are dimensionless, so that R is also dimensionless.

For materials where the vi-axis is o two-fold symmetry axis, the elastic constants
Coa=Cy=0and Cyyyr = Cyy2=0. There is thus no coupling of the displucement
component 1, with the components u, and u,. In this case, the matrix P*in eyn (25) can
be shown to be

100
P-=—[0 1 0} (29
0 0 0

Also. a1, and Ky, disappear for planc problems, so only K, and K, need be considered.
From eqns (29). (25) and (15). the stress intensity factors in terms of the stresses become
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. _ K, N pe r “ os Ny
[l z)

() J-wel () Jorml ) )
o (3] B S EE ) P S B

It is evident from egns (30) and (31) that when r — 0. the stresses exhibit an oscillatory
singularity, as was mentioned earlier. In the case when 7 = 0, that is. when the elastic body
is homogeneous, R’ becomes a unity matrix and the stress intensity factors are then of the
classical separate form for the two distinct modes of cruck deformation.

where

3. BEM DETERMINATION OF THE S.LF.

The analytical basis of the BEM in clastostatics is the transformation of the governing
partial differential equations valid over the eatire elastic solution domain Q into an integral
equation written for just its boundary . In the direct formulation, use of the unit load
fundamental solutions with the Betti-Rayleigh reciprocal work theorem will, through
appropriate limiting operations, result in the boundary integral equation (BIE) relating the
displacements u, and tractions ¢, at ', The BIE for two dimensions may be written in
indicial notation as:

C,u(l’)ll,(l’)+J (DT, (P Al (Q) = J LU (P.OYAU(Q). 2 =12, (32)
1 1

where U (P Q) and Ty (P.Q) are the fundamental solutions which represent the dis-
placenmients and tractions, respectively, in the xy-direction at P in a plane homogencous
infinite body. Details of their derivation for the anisotropic case have been given by Cruse
(1988) and their explicit forms have also been presented by Tan und Gao (1992). Also, in
eqn (32), the value of Cy(P) depends on the local geometry of I at the point P.

To solve the BIE numerically, the boundary I of the solution domuin is divided into
a scries, or “mesh™ of line elements. Over cach of these elements, the boundary geometry,
displacements and tractions may be written, as in the present work, in terms of their
respective nodal values and the quadratic shape functions N7(S). The clements cach have
three nodes, two at the ends and one at the mid-point ; and the associated shape functions
N¢({) are

N = K-,

NGy = 1=,
N =K1 +0).

(33)
Substitution of the isoparametric representations of the gecometry and functions into cgn
(32) will result in a sct of lincar algebraic equations for the unknown tractions and dis-
placements at the nodes on the boundary of the solution domain. These equitions may
then be solved using standard matrix solution techniques.

If the elastic domain is made up of several picce-wise different materials, it may be
divided into several sub-regions, cach with corresponding material properties. A BIE is
written for each sub-region and the appropriate continuity and cquilibrium conditions are
applied at the common interface boundarics, before the linear algebraic equations are
solved. This multi-region approach may also be used to model general crack problems in
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homogencous bodies (Blandford er al.. 1981) whereby a domain is divided into two or
more sub-regions with the artificial interface boundaries containing the crack plane.

It has been well established in BEM linear elastic analysis of fracture problems that
the use of the traction-singular quarter-point crack-tip elements will yield accurate results
for the stress intensity tactors [see, ¢.g. Martinez and Dominguez (1984), Tan and Gao
(1990a. b. 1991, 1992)]. This is because the near-tip fields are more accurately represented
over these elements. It has also been widely shown that by simply shifting the mid-point
nodes of the quadratic isoparametric elements adjacent to the crack tip to the quarter-
points (see Fig. 2). using the shape functions given in eqn (33), the following form of the
variation for the displacements and tractions over the elements is obtained :

i, =-";“+AL:)\/’+.4(‘” r o= 1.2, 34
t { {

where the superseripts denote the nodes shown in Fig. 2. and /s the length of the crack-
tp element. In addition. it the shape functions associated with the nodal tractions for the
element ahead of the crack-tip. as shown in Fig. 2, are multiplied by \/{/r. the tractions are

O(r '7). That s,
| gty g r o’ [
I,~[.l, + A \//+A, /]\/r

N A T
F,"N'(o/r +F,~w-(g)r+ﬂ,w (). (35)

It can be further verified that the computed nodal values of “tractions™, 15, on this traction
singudar clement are related to the physical values ¢ as follows:

=),
,’():; - g,t}:)‘

M= lim 1',“\/;. (36)

For cracks in homogencous materials, the bimaterial property 3 = 0, eqn (31) then
becomes

(a)
/‘\‘\7
T
(b)
Node
m 2 3

Fig. 2. Quarter-point crack tip clements: (a) on the crack faces ; and (b) ahead of the crack tip.

SAS 29:24-3
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() ]-e-o )

K(L) = K = /2rrt =/ 2nlt'". (38)

& A
[Kl.l] Ny [[{1,], (39)

in which the classical stress intensity factors are directly obtained from the computed nodal
vilue of the traction coefficient £}" at the crack tip. In the case of interface cracks between
dissimilar isotropic materials, P, = P,.=0 and P,.= —P,, = | in eqn (31). it then

) R I B

which clearly has the oscillatory form as r — 0. However, the modulus K, of the complex
stress intensity factor, defined as

S0

or

Ko = K| = JK{+Ki, (41)

is not oscillatory in form. Besides, the strain energy release rate, ¢ which may generally be
expressed as (Wu, 1990):

G ='K'D 'K, (42)

cin be shown to be directly proportional to K. This led the authors to determine K, instead

of Ay and Ay dircetly in their previous studies (Tan and Guo, 19904, b, 1991). From eqns

(30). (36) and (40) K, can be shown to be related to the computed nodal traction coetlicients
as:

K, = \/27[[ [(I—‘|”)3+(l-'3“):]1 ) (43)

For an interface crack between dissimilar anisotropic materials, Py # 0. (2, = 1, 2).

[t can then be casily veritied using eqns (31) and (36) that A, will not have the sume simple

form of eqn (42) in terms of the computed traction cocflicients. A new modified shape

function is therefore introduced into eqn (35), which incorporates the oscillatory nature of

the traction singularity at the interface crack-tip. The variation of the tractions over the
singular quarter-point crack-tip element is now taken to be:

[TH )
i [ ()l e ()

(44)

.,
"
]

where 1 is the computed traction coeflicient at the ¢th node of the crack-tip clement with
this ncw modified shape function. It can be casily verified that the relationship between ¢,
and the physical tractions ¢ is as follows:
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FN ()
lx _t: .

i = RED 082,

lim\/f-k'[(f>_w]-:“’ (43)
AN I =

For two different characteristic dimensions L, and L.. the corresponding stress inten-
sity factors K(L,) and K(L.) may be related according to Wu (1990):

K(L) = R'Ii(ﬁ')n]-l\'(L:). (46)

Thus, from eqns (28). (30). (45) and (46). using the crack-tip element length /. as one of
the characteristic dimensions,

K(L)=FR’ (-L)l K(/)

el () Hl (]

=R’ (f) < J2nl 10, (47)

k]
Y

where € = [(1Y (M]" are the computed traction cocflicients at the crack-tip node. Equa-
tion (47) may be written explicitly as

) e F AR N
[t |- v (] )

As can be seen from this equation, the numerical difficulties associated with the oscillatory
singularity are now removed. Furthermore, it enables the stress intensity factors to be
obtained directly und simply from the BEM computed traction coefficients at the crack-tip
node.

4. NUMERICAL EXAMPLES

The results for four test problems, all with exact analytical solutions, are presented
here to demonstrate the veracity of the BEM approach described above for obtaining stress
intensity factors of bimaterial interface cracks. Of these four problems, isotropic bimaterials
were treated in two of them. This was, in part, to verify the soundness of the technique
when the material propertics reduce to the casce of isotropy, and also because of the paucity
of cxact closed-form solutions for anisotropic bimaterial interface cracks. In addition to
these test problems, onc other problem was treated in this study to illustrate a typical
application of the method, such as in the micromechanics analysis of multi-phase materials.
Itinvolves an elliptical inclusion with a debond crack in an anisotropic matrix.

In the numerical treatment of the problems, all the quadratic quarter-point crack-tip
clements have the same length [ for a given problem case. This length [ was typically taken
1o be 10% of the modelled crack length a. The clements adjacent to these crack-tip elements
were gradually increased in size away from the crack-tip along the bimaterial interface. As
will be seen below, a relatively small number of boundary elements was used for cach of these
problems considered. All the computations were carried out on the Honeywell DPS8/70
computer using single precision arithmetic.
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Fig. 3. Intinite isotropic bimaterial plate with an interfuce erack subjected to remote direct stresses
Problem (1).

Problem (i) : An interfuce crack in an infinite isotropic himaterial plate

Figure 3 shows the first test problem treated, namely, that of an inlinite isotropic
bimaterial plate with an interface crack of length 2a, subjected to direct stresses at infinity.
In the BEM model, a finite bimaterial plate was considered instead. but its height and width
were taken to be 20 times the size of the crack. Thus the effects ol the finite boundaries can
be expected to be not significant. The problem was analysed under conditions of plane stress.
Also, with reference to Fig, 3, the applied stress o, was taken to be [v, — (£, E)v [(e,), where
£, and v, are the Young's modulus and Poisson’s ratio, respectively, of material 2. This
was to ensure continuity conditions for the strain «,, along the bimaterial interface. The
boundary clement mesh employed for this problem is shown in Fig, 4 where only half of

-4~

Box A
S

l
I
Crack tip |
|

-~

+
T

Fig. 4. BEM mesh for Problem (i).
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Table 1. Normulized stress intensity factors for an interface crack on an infinite bimaterial isotropic plate under
remote stresses — Problem (1)

K, [N m} Kn;’ﬂ‘.\ ;l_t;
E E, v Exact BEM %a Error Exact BEM % Error
1 0 100 1.010 1.0 0 0 0
5 0.075 1.006 1.024 1.8 —0.098 —0.09 =20
20 0.104 1.013 1.031 1.8 —0.136 -0.14 37
100 0.114 1.013 1.017 0.2 —0.148 —0.155 4.7

the physical problem wus modelled by virtue of symmetry. A total of 34 boundary elements
and 68 nodes were used to represent the two sub-regions with the respective material
properties. Four different values of E,/E. were treated, namely. 1, 5. 20 and 100 the
Poisson’s ratios v, and v, were taken to be the same however, as 0.3. These ratios thus
correspond to the following values for the bimaterial constant y ineqn (16): 0, 0.075. 0.104
and 0.114. respectively.

The exact solution for this problem has been given by Rice and Sih (1965). Using eqn
(48). the stress intensity factors A and A, were obtained from the BEM computed traction
coeflicients at the crack-tip node of the traction-singular quarter-point element. The charac-
teristic dimension L was taken to be equal to the half-crack length ¢ in the calculations.
Table 1 lists the normalized stress intensity factors, Ki/e,/na and Ky/o,./na. as obtained
from the BEM analysis for the different £,/ E| ratios considered. Also listed are the cor-
responding exact solutions of Rice and Sih (1965). As can be scen, the BEM results are
very good indeed., with less than 2% crror for K, and less than 5% for K),. The striain encrgy
release rate, G, for the difterent cases was also caleulated according to eqn (42) in the BEM
study, and thetr non-dimensionalized values are shown plotted in Fig. 5 against the £,/F,
ratio with the closed form solution. The errors of the BEM results were again less than 3%
for the range of the Young's moduli ratios treated.

Problem (i) : A debond crack between a circular inclusion and an infinite matrix

Figure 6 shows an isotropic, elastic circular inclusion, radius a, embedded in an infinite
matrix which is made of another isotropic elastic material. A circular are debond crack,
spanning an angle 20 exists as shown, between the two clastic media, and the matrix is
subjected to remote biaxial tension . In the BEM analysis, the infinite body was modelled
as a square with side lengths 20 times the diameter of the inclusion. Four different values
of ) were treated, namely, € = 30, 60, 90 and 120", For cach of these angles, the same
E\/E, ratios as in the previous example, namely, 1, 5, 20 and 100, were again considered.
The Poisson’s ratios for both materials were also taken as 0.3 but plane strain conditions
were assumed. The corresponding values of y, the bimaterial constant, were thus 0, 0.061,
0.084 and 0.092, respectively. Figure 7 shows a typical BEM mesh used to model half of

%0 —
40 |- —— Exct
—_—
g O BEM
o
¥l
=
~
N-._
i o}
<
(]
o
° L ! J
i s 10 20 100
E/E,

Fig. 5. Variation of the normalized strain cnergy release rate, G/{[(1 —vi)/E \)(a,.ra)} with the
Young's modulus ratio, £,/E.—Problem (i).
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Fig. 6. An interface crack between a circular isotropic inclusion and an infinite isotropic matrix
subject 1o biaxial tension—Problem (it).

the physical problem, advantage being taken of symmetry. It has two sub-regions with a
total of 35 boundary clements and 70 nodes.

Table 2 preseats the BEM computed values of K./a\/na and K, /o /na, and the cor-
responding exact results by Perfman and Sih (1967). The characteristic dimension L for the
stress intensity factor computations was taken as a. As can be seen from the table, the
magnitudes of the error in the BEM solutions were all within 5% for all the cases considered.
This was also true for the computed strain energy release rate, G, the variations of which
with £/, for the difterent values of # are shown in Fig. 8.

Problem (iii) . An interfuce crack between dissimilar materials opened by internal pressure
The third test problem considered was that of a crack, length 2« and subjected to
internal pressure a4 at its faces, which lic along the straight interface between two dissimilar

-+

Box A
; W
- - - - - = !
| |
| Crack
tp |
I ~ | Box A
f I
[ N . . —
I T T T L L] T

Fig. 7. BEM mesh for Problem (ii).
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Table 2. Normalized stress intensity factors for  circular arc crack lying along the interfuce of an isotropic elastic
inclusion in an infinite isotropic body —Problem (ii)

Ko ra Ky a,\'n—u-
4 E, E, v Exact BEM % Error Exact BEM % Error

30 I 0 0.630 0.625 -23 -0.172 —-0.166 -35
5 0.061 0.884 0.859 -28 -0.124 -0.126 14
20 0.084 0.938 0.934 —-04 —0.089 -0.091 22

100 0.092 0.953 0.955 0.2 -0.077 —-0.077 0
60 ! 0 0.644 0.631 -20 -0.372 —~0.364 —=2.2
5 0.06¢ 0.986 0.951 —3.5 ~0.459 —0.448 =24
20 0.084 1.080 1.069 -10 —0.460 —0.456 -09
1O 0.092 1.106 1.105 -0.1 —0.457 ~0.452 —-1.1
90 { 0 0.471 0.463 —-1.7 —-0.471 —-0.457 -3.0
S 0.061 0.797 0.779 -2.3 —0.680 —0.664 -24
20 0.084 0.918 0912 0.7 —-0.738 -0.725 —-1.2
100 0.092 0.957 0.957 0 —-0.754 -0.739 =20
120 { 0 0.265 0.26l —-1.5 —0.460 —0.442 -39
5 0.061 0.497 0.497 0 —-0.708 -0.707 -0.1
20 0.084 0.610 0.613 0.5 —-0.813 —0.802 —-1.4
100 0.092 0.653 0.657 0.6 —0.851 —0.829 =26

semi-infinite bodies, as shown in Fig. 9. [n this problem, material | was treated as anisotropic
with the orthogonal material axes, x¥-x%, rotated by an angle # with respect to the global
xX,—x; axes, as shown in the figure. To reduce the number of variable parameters in the
problem, material 2 was treated as isotropic. It should, however, be emphasized that this
does not detract from the validity of the BEM technique employed. For the purpose of
illustration, the clastic propertics of single crystal alumina Al O, were used for material 1,
while those of fully stabilized polycrystal zirconia, FSP ZrO,, were used for material 2. The
engineering constants for the former, caleulated from the elastic compliances given in
Simmons and Wang (1971), are as follows

Y o= 345 G, E% = 516 GPa, °%, = 345 GPa,

v, =0.131, v = 0.362, v3, = 0.196,
Nt =59 GPa, N, =0, Nty = —59 GPa,
Gt = 173GPa,

where the asterisks denote that these values are with reference to the orthogonal material
axes directions ; £ is the Young's modulus in the x®-direction; G*, is the shear modulus

o 1 ! 1 ]
! 3 ) 100
E, /E,

Fig. 8. Variation of the normalized strain cnergy release rate, G/{[(1 —v)/E, |(a’ra)} with the
Young's modulus ratio E,/E,—Problem (ii).
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Fig. 9. An interfiace crack between anisotropic alumina and FSP zirconia — Problems (itt) and (iv).

in the x¥-x* plane: v% is the Poisson’s ratio which is defined as the compressive strain (n
the xf-direction due to a unit extensional strain in the xXdircction: and the quantitics %«
arc referred to by Lekhnitskii (1963) as the coeflicients of mutual influence of the first kind.
As a matter of interest, the isotropic values for the Young's modulus and Poisson’s ratio
of ALLO, have been given in the literature as 396 GPa and 0.24, respectively. As for the FSP
zirconia, which is isotropic, the corresponding values are 192 GPa and 0.3, respectively.

In the numerical analysis. a finite bimaterial body was treated with width B and height
217 equal to 20a¢. Figure 10 shows the boundiry clement mesh employed for the problem ;
1t has o total ol 46 clements and 92 nodes. Plane strain conditions were again assumed in
the analysis. Also, four different values of 0, the angle of orientation of the material axes,
were considered, namely, 0 = 07, 30, 60 and 90 . The exact closed-form solution for the

——
/Box X
- Y
LS -_-__" L
P
-
" ete, T T T T et T
L ‘ Box X
i 4 e ; 4

Fig. 10. BEM mesh for problems (iii) and (iv).
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Table 3. Normalized stress intensity factors and strain energy release rates for a
pressurized interfuce crack between FSP ZrO, and anisotropic Al.O, half-planes.
K=o, za:G,=}(d, +d.+d, +d;)|,..K"

4 v Exact BEM % Error
0 0.0254 K'K 0.992 1.000 0.8
KK 0.999 0.992 -0.7
Kt K 0.107 0.101 5.6
K2 K ~0.107 —0.107 0.0
G'.G, 0.478 0.485 1.4
G*G, 0.479 0.4%3 0.8
30 0.0443 K'' KR 0.979 0.994 1.5
K% R 0.992 1.005 1.3
K4 K 0.193 0.186 -36
K& R —0.193 -~0.186 -36
G'G, 0478 0.491 2.7
G% G, 0.479 0.489 2.1
60" 0.0078 KR 1.000 1.005 0.5
KR 1.000 1.003 0.3
KR 0.035 0.033 -57
KR -0.035 —0.033 -5.7
GG, 0.522 0.526 0.8
G*G, 0.522 0.525 0.6
90 0.0254 K'/R 0.999 1.006 0.7
KR 0.992 0.99% 0.6
K¢/ KR 0.111 0.108 -54
KR ~0.111 —0.108 ~54
GG, 0.496 0.502 1.2
GG, 0.495 0.500 1.0

stress intensity factors of interface cracks between anisotropic dissimilar half planes has
been given by Wu (1990). Thus, the accuracy of the BEM solutions can be assessed with
respect o these results, This is shown in Table 3, where the superscripts “A™ and “B™ in
K. Ky and ¢ denote the two crack tips shown in Fig. 9. The characterizing dimension L
used in the stress intensity fuactor computations here was W, the width of the bimaterial
plate. Also, the parameter G, used for non-dimensioning the strain energy release rate G is

Gy = 3(‘711 +‘7|: +‘721 +‘722)ln=0(0(1)m’)- 49)

where d,; are the coellicients of the D matrix defined in eqn (27) and are material parameters.
For the single crystal propertics of Al O, considered, when 0 = 0, they are as follows:

d, =1375x10 d,=4.041x10°,
dyy =404 x10 %, dya=1328x10 2 (50)

i

The accuracy of the BEM results for K, and G can be scen to be very good indeed, the
crrors were all less than 3%. Those for Ky were slightly higher however, but then, the
numerical values of Ky, are about an order of magnitude smaller than K| for this problem.
It is also evident from the results that, for a given BEM mesh employed, the accuracy of
the solutions obtained was not dependent on the orientation of the material axes, as should
be the casce.

Problem (iv) : An interface crack subjected to pure shear lying between dissimilar materials
The fourth test problem analysed was similar to that in Problem (iii) in all respects
cxcept for the loading condition on the crack faces. Instead of internal pressure acting
on the crack faces. they were subjected to a uniform shear stress t, as shown in Fig.
9. The boundary element mesh used was also the samc as in the previous example,
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Table 4. Normalized stress intensity tactors and strain energy release rates for an
interface crack subjected to shear stress, lying between FSP ZrO, and anisotropic
ALO, half-planes. K = 7, ma: Gy = Wd, +d, +d. =d K-

t - Exact BEM "o Error
0 0.0254 K'K -0t —0.104 -6.3
KPR 0111 0.104 —6.3
Ki K (.999 1.006 0.7
K8 K 0.992 0.998 0.6
G¢' G, 0.496 0.502 1.2
G" G, 0.49 0.500 1.0
30 0.0443 KK —0.187 —0.179 —43
KIK 0.187 0.179 —343
Ki K 0.992 1006 1.4
Ki K 0.979 0.992 1.3
G'G, 0.464 0.475 24
G* G, 0.462 0474 24
60 0.007% K K —0.032 —0.030 ~6.3
KK 0.032 0.030 —63
KK 1.000 1.004 0.4
KR 1.000 1.002 0.2
G' G, 0,485 0.459 0.8
GG, 0.485 0.487 04
%) 0.0254 KK —0.107 —0.101 -35.0
KR 0.107 0103 37
KoK 0992 1.004 1.2
A K 1,999 1.00% 0.9
GG, 0.47% 0.454 1.2
"Gy 0.479 0483 0.8

as shown in Fig, 10. Table 4 lists the results for the normalized stress intensity tactors,
K./r[,\/ml and I\',./r.,\/ml. and the normalized strain energy release rate /Gy, where
Go=(d +d s +ds +d, ) (tira)/d. The coellicients dy have the same numerical values
previously used. In this problem, the magnitudes of Ky are about an order greater than
those of K. It is again of significance to note that the BEM results were very good indeed,
thus validating the technique employed.

Problent (v) : An celliptical inclusion with an interface crack in an anisotropic matrix

The final problem treated was that of an elliptical elastic inclusion embedded in an
infinite anisotropic matrix and containing an interfuce debond crack as shown in Fig. 11,
The geometry of the inclusion is defined by the semi-major and semi-minor axes, ¢ and b,
respectively, and the extent of the debond crack is measured by the angle 20. Also, the
anisotropic matrix is subject to remote uniform radial tension 6. The ¢lastic inclusion was
taken to be FSP ZrO; here while the matrix was taken to have the same clastic propertics
of single crystal Al,O, given carlier. Five different ellipse aspect ratios, bia, were analysed,
namely, bjfa = 173, 172, 1. 2 and 3. For cach of these geometries, three sizes of the interfuce
crack were treated ; they correspond to 0 = 30, 60 and 90 .

In the BEM analysis, the infinite matrix was modelled as a finite circular cylinder with
radius 10a. Also, the material axes directions were taken to coincide with those of the global
Cartesian axes. For the purpose of comparison, repeat computer runs were made with the
matrix assumed to be isotropic Al,O, for cach of the above-mentioned geometric cases.
Figure 12 shows a typical BEM mesh employed for the problem where @ maximum of 52
clements and 104 nodes were used.

The results for the stress intensity lictors are shown in Table 5: they have been
normalized with respect to o/'na and the characterizing dimension L used in their com-
putations was «. [t is worth noting from this table that the stress intensity lactor K and K,
at the two crack-tips “A™” and “B” can be significantly different from onc another in
magnitude because of the material anisotropy. They are also in deviation from the cor-
responding results obtained when the matrix was assumed to be isotropic. Figures 13(a),
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Fig. 11. An clliptical FSP ZrO; inclusion in an anisotropic Al,O, matrix with an interface cruck —
Problem (v).

(b) and (¢) show the variations of the normalized strain encrgy release rate with the
aspect ratio, b/a, of the elliptical inclusion, for the three debond crack sizes analysed. The
coctflicients d,, in the normalizing parameter were the same as before as given in egn (50).
Of interest to note is that the strain encrgy release rate obtained for theé isolropic matrix
case was closer to that at crack-tip “B™ in the anisotropic matrix case, for a given crack
S1Z¢,

5. CONCLUSIONS

The multi-region boundary clement method (BEM) for plane anisotropy has been
employed in the analysis of interface cracks between dissimilar materials. It was based

Fig. 12. BEM mcsh for Problem (v).
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Fig. 13. Variation of the normalized strain energy release rate, G/G,. with the cllipse aspect ratio,
bla, (a) for 0 = 30, (b) for 0 = 60 , and (¢) for 0 =90,

on the quadratic isoparametric element formulation and special quarter-point crack-tip
clements which incorporate the proper oscillatory O(r ' ***%) traction singularity were used.
With these elements, a simple expression relating the stress intensity factors to the BEM
computed nodal traction coeflicients at the interface crack tip could be obtained. This
provided a very quick and cfficient means of obtaining the stress intensity factors for
interface cracks between dissimilar anisotropic bodies. The technique was validated by four
test problems in this paper, two of which have a crack between dissimilar isotropic materials
while in the other two, material anisotropy was considered. Very good solution accuracy
for the stress intensity factors and the energy release rates were obtained even with modest
mesh discretizations. The results for a fifth problem, namely that of an elliptic elastic
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Table 5. Normalized stress intensity factors for an interface crack between an
elliptical FSP ZrO, zirconia inclusion and an infinite alumina Al.Q; matrix
subjected to uniform radial tension—Problem (v). K = o, '
(NOTE: For the isotropic matrix, K, is + ve for crack-tp 4. —ve for crack-

tip B.)
Anisotropic matrix Isotropic matrix
0 bha  K'K KR KR K K Ky (%)

30 13 0.325 0.142 0.358 —-0.047  0.369 0.039
12 0.412 0.022 0.411 —-0.092 0429 0.059

l 0.408 0.260 0.482 ~0.116  0.494 0.155

2 0405 0.239 0.443 —-0.266 0462 0.279

3 0.429 0.396 0.594 —0.241 0536 0.314

60 13 0.526 0.009 0.520 —0.145  0.556 0.094
12 0.543 0.059 0.530 0239  0.580 0.159

l 0.420 0.225 0.503 -0.236  0.469 0.291

2 0.439 0.286 0.531 -0.332 0495 0.334

R 0.583 0.263 0.620 -0412 0610 0.363

90 13 0.135 0.229 0.273 —0.249  0.200 0.281
12 0.174 0.248 0.283 —0.283  0.221 0.305

{ 0.273 0.280 0.369 —-0.330 0320 0.338

2 0442 0.352 0.547 —(.388  0.498 0.406

3 0.584 0.341 0.689 —0.381 0.641 0.392

inclusion in an anisotropic matrix and containing an interface debond crack. have also been
presented. Tt provided an illustration of the practical uscfulness of the boundary element
method in the fracture mechanics analysis of multi-phase materials even in anisotropy.
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